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trans,syn,trans-Fused polycyclic ether structures are found in
many biologically active marine natural products.1 These com-
pounds have received much attention from the synthetic community
and many elegant methods toward their synthesis have been
described.2 However, these syntheses generally rely on iterative
strategies in which each cyclic ether is formed over a stepwise series
of operations. Our laboratory has previously described the bio-
mimetic synthesis oftrans,syn,trans-fused polyoxepanes3 and
polypyrans4 via Lewis acid-intitiatedendo-regioselective tandem
oxacyclization of polyepoxides.

Our mechanistic hypothesis (Figure 1) for tandemendo-oxa-
cyclization involves Lewis acid activation1 followed by nucleo-
philic addition of 6,7-epoxide to give fused bicyclic epoxonium
ion 2. Subsequent epoxide additions occur as shown for2 f 3,
until the oxacyclization cascade is terminated by a tethered carbonyl
nucleophile, to provide all-trans,syn,trans-polycyclic ether product,
i.e., 4.

From previous work by Coxon and others5 on regioselective
hydroxyepoxide oxacyclizations, we anticipated that Lewis acid-
initiated oxacyclization of disubstituted epoxides would not yield
the endo-regiochemistry required fortrans,syn,trans-fused poly-
cyclic ethers, but would instead give the undesiredexo-oxacycliza-
tion product. For this reason all previous examples from our
laboratory had utilized alkyl substitution (i.e., R′ ) R′′ ) Me)3,4

to overcome the kinetic and stereoelectronic bias towardexo-
oxacyclization. However, alkyl substitution is not found at all ring
junctions in the naturally occurring fused polycyclic ethers. Herein
we report the extension of our Lewis acid-initiated oxacyclization
reaction to include 6,7-disubstituted epoxides (R′ ) Me, R′′ ) H),
and further disclose the application of 3-silyl epoxides (R′ ) SiMe3,
R′′ ) Me) to achieveendo-regiochemistry.

Preliminary experiments with the diepoxide5 from 3-desmethyl-
geraniol (Scheme 1) confirmed the preference forexo-cyclization
predicted by Coxon5 to give 7 in low yield.6 However further
experimentation revealed that 3-silyl diepoxide87,8 favored regio-
selective tandemendo-oxacyclization to afford99 in good yield.

We next investigated 3-silyl triepoxides11 and126-8 (Scheme
2), which upon treatment with freshly distilled BF3-OEt2 at

-40 °C provided thetrans,syn,trans-fused dioxepane product13.
The more nucleophilic dimethylcarbamate consistently gives su-
perior yields over thetert-butyl carbonate in these oxacyclization
reactions (vide infra). Treatment of13 with TBAF followed by
peracylation gave ring-opened dioxepane14, corresponding to
protiodesilylation at C-3 accompanied by cyclic carbonate removal.9

On the basis of Coxon’s observations,5 we expected silyl sub-
stitution at the 6,7-epoxide would also be required to achieveendo-
oxacyclization (Figure 1, R′ ) Me, R′′ ) SiMe3). The reactions of
both15 and16 with BF3-OEt2 gave the bisoxepane-carbonate17
as the major product (Scheme 3).6 However, 7-silyl substituted
dioxepane17could not be protiodesilylated or functionalized under
a variety of conditions, apparently as a neighboring hydroxyl group
was not available to assist silicon migration from carbon.

These results led us to directly investigate the cyclization
regioselectivity of 6,7-disubstituted epoxides (Figure 1, R′ ) Me,
R′′ ) H; Scheme 4). In contrast to expectations,5 both substrates
18 and 1910 provided the all-endo oxacyclization product best
characterized as the ester derivative20.11 The structure of20 was
confirmed by single-crystal X-ray analysis.6 Likewise, oxacycliza-† Emory University X-ray Crystallography Laboratory.

Figure 1. Proposed mechanism of Lewis acid-initiated oxacyclization.

Scheme 1. 2,3-Epoxysilane Oxacyclizationa

a Conditions: (a) BF3-OEt2, CH2Cl2, -40 °C.

Scheme 2. 2,3-Epoxysilane Oxacyclization/Protiodesilylationa

a Conditions: (a)11, BF3-OEt2, CH2Cl2, -40 °C; Ac2O, pyridine. (b)
12, BF3-OEt2, CH2Cl2, -40 °C; Ac2O, pyridine; CF3CO2H. (c) Bu4NF,
THF; Ac2O, pyridine.

Scheme 3. 6,7-Epoxysilane Oxacyclizationa

a Conditions: (a) BF3-OEt2, CH2Cl2, -40 °C. (b) Ac2O, pyridine.
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tion of substrates21 and2210 bearing two “internal” disubstituted
epoxides also resulted in the formation oftrans,syn,trans-fused
tetracyclic product23.12

The generalendo-regioselectivity of substrates18, 19, 21, and
22 is consistent with the idea of nucleophile-driven regiochemical
control (Figure 2)3 where the nature of the nucleophile (i.e., epoxide
vs carbonyl) drives the regioselectivity of oxacyclization with
disubstituted epoxide electrophiles. In the case of the 2,3-epoxide
nucleophile addition to either C6 or C7 of epoxonium ion24, endo-
cyclization is observed due to formation of fused bicyclo[4.1.0]
intermediate25 rather than bicyclo[3.1.0]26 which would have
arisen fromexoaddition. We speculate that25 is favored due to
minimization of ring strain in formation of [4.1.0] epoxonium ion
25 relative to26.

With carbonyl nucleophiles (i.e.,tert-butyl carbonate andN,N-
dimethylcarbamate) there is little ring strain associated with either
intermediate29or 30,3a,band the kinetically anticipatedexoproduct
arising from28 (H at C-3) predominates in substrates with 2,3-
disubstituted epoxide electrophiles. To achieve theendo-oxa-
cyclization to29 via 27 in the terminal cyclization, either an alkyl
substituent (R′ ) Me) or removable surrogate such as R′ ) SiMe3

is essential (Figure 3).
In conclusion, we have discovered that “internal” disubstituted

epoxides are viable substrates in Lewis acid-initiated oxacyclization

of polyepoxides. We note the reaction yields for oxacyclization of
substrates21 and 22, 20% and 25% respectively, are similar to
that of the geranylgeraniol-derived tetraepoxide substrate previously
reported (27% yield3b). We have further demonstrated the utility
of 2,3-epoxysilanes (8, 11, 12) to serve as a regioselectivity-
directing surrogate in this tandem oxacyclization reaction, which
can be efficiently removed. These findings greatly expand the scope
of biomimetic oxacyclization methodology so that naturally oc-
curring, non-terpene-derived polycyclic ethers can now be ef-
ficiently prepared by our approach.
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Scheme 4. Oxacyclizations of Disubstituted Epoxide Substratesa

a Conditions: (a) BF3-OEt2, CH2Cl2, -40 °C. (b) Ac2O, pyridine.

Figure 2. Rationale for regioselectivity directed by epoxide nucleophile.

Figure 3. Rationale for regioselectivity in terminal cyclization step.
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